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SUMMARY

This paper discusses computational modeling of micro flow in the head–disk interface (HDI) gap using
the direct simulation Monte Carlo (DSMC) method. Modeling considerations are discussed in detail both
for a stand-alone DSMC computation and for the case of a hybrid continuum–atomistic simulation that
couples the Navier–Stokes (NS) equation to a DSMC solver. The impact of the number of particles and
number of cells on the accuracy of a DSMC simulation of the HDI gap is investigated both for two-
and three-dimensional configurations. An appropriate implicit boundary treatment method for modeling
inflow and outflow boundaries is used in this work for a three-dimensional DSMC micro flow simulation.
As the flow outside the slider is in the continuum regime, a hybrid continuum–atomistic method based
on the Schwarz alternating method is used to couple the DSMC model in the slider bearing region to the
flow outside the slider modeled by NS equation. Schwarz coupling is done in two dimensions by taking
overlap regions along two directions and the Chapman–Enskog distribution is employed for imposing the
boundary condition from the continuum region to the DSMC region. Converged hybrid flow solutions are
obtained in about five iterations and the hybrid DSMC–NS solutions show good agreement with the exact
solutions in the entire domain considered. An investigation on the impact of the size of the overlap region
on the convergence behavior of the Schwarz method indicates that the hybrid coupling by the Schwarz
method is weakly dependent on the size of the overlap region. However, the use of a finite overlap region
will facilitate the exchange of boundary conditions as the hybrid solution has been found to diverge in the
absence of an overlap region for coupling the two models. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The direct simulation Monte Carlo (DSMC) method has been widely employed for modeling
gaseous flows under rarefied flow conditions. Applications of the DSMC method range from
simulation of hypersonic flow applications in the upper atmosphere such as reentry vehicles, orbital
vehicles, etc to the simulation of low-speed gas flows in devices at micro and nano scales. In
the case of upper atmosphere applications, rarefied gas flow conditions are caused by low-density
conditions. The Knudsen number is typically used to find the degree of rarefaction involved, based
on which different flow regimes could be identified. Under low-density conditions, the mean-free
path is in the order of meters resulting in a high Knudsen number. MEMS applications typically
operate under standard atmospheric (STP) conditions. The mean-free path of air at STP is in the
order of nanometers and rarefied flow conditions in such applications are caused by the extremely
small geometric dimensions involved which are of the order of micro/nano scales. Rarefied gas
flow applications could also involve situations where both continuum and rarefaction regions occur
simultaneously, thereby demanding the use of multi-scale methods.

A classic example of a rarefied flow at a nano scale is the flow that occurs in the head–disk
interface (HDI) gap in a modern hard disk drive (HDD). As the HDI gap is of the order of
a few nanometers, the flow in the gap will deviate from the continuum hypothesis and hence
the modeling of this flow is best done using an appropriate flow model such as the DSMC
method. The flow outside the HDI gap region is in the continuum regime and hence an appropriate
multi-scale method is required to couple the continuum solutions to the DSMC solutions within
the HDI region. The global airflow characteristics outside the HDI gap in the HDD enclosure
have been previously investigated by various researchers [1–4] using conventional continuum
flow models based on the incompressible Navier–Stokes (NS) equations. Previous applications
of DSMC to compute flow within the HDI gap include those by Alexander et al. [5] and
Huang et al. [6]. In this work, various flow modeling aspects for the DSMC method have been
discussed in detail both for a stand-alone DSMC computation and for the case of a hybrid
continuum–atomistic simulation, which is then applied to compute the flow near the vicinity of the
HDI gap.

The DSMC method originally developed by Bird [7] is a physical model that is based on the
discrete molecular nature of the system, essentially capturing the physics of a dilute gas governed
by the Boltzmann equation. This method models the macroscopic behavior of a fluid based on
the discrete molecular character of gases by simulating the motion, interaction and collision of
representative particles within an array of computational cells. The state of the system is defined
by the positions and velocities of representative particles, which represent a large collection of real
gas molecules. Although DSMC is a reliable and accurate method, it is computationally intensive
due to the extremely small time steps, typically in the order of Pico seconds and to the linear
cell dimensions that are much smaller than the mean-free path involved in the flow computation.
These constraints limit the size of the region that can be modeled by the DSMC under STP.
Hence all the DSMC simulations reported in this work have been done using the parallel DSMC
method that can accelerate the flow modeling process. It is also important from the point of view
of computational efficiency, to impose guidelines regarding the minimum number of cells and
the number of particles per cell required without compromising the accuracy, especially so for a
three-dimensional flow simulation. In this work, the impact of number of particles and number
of cells on the accuracy of a DSMC simulation has also been investigated both for the two- and
three-dimensional cases.
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The other issue of the DSMC flow simulation that requires special attention is the imposi-
tion of inflow and outflow boundary conditions. This aspect is particularly challenging for the
DSMC method as boundary conditions are imposed at the inflow and outflow boundaries by
injecting particles into the system with a molecular velocity distribution corresponding to the mean
flow macroscopic variables corresponding to the external flow. In this work, boundary condition
treatments for the DSMC method have been discussed in detail both for a stand-alone DSMC
computation and also for the case of a hybrid continuum–atomistic simulation. Various methods
for treating the inflow/outflow boundary conditions for micro flows are discussed and an appro-
priate implicit boundary treatment method is used in this work for the three-dimensional DSMC
micro flow simulation. Various multi-scale methods are also discussed in this work for coupling
the DSMC model in the slider bearing region to the flow outside the slider modeled by NS
equation. The majority of the multi-scale methods for flow modeling reported in the literature focus
on the computation of hypersonic non-equilibrium flow applications. Application of multi-scale
methods to low-speed gaseous flow applications in MEMS devices, however, has received due
attention only recently and reported works are very limited in this area. In the current work, a
multi-scale method based on the Schwarz alternating method, which is the appropriate method
for incompressible flow applications, is employed for the hybrid coupling. The hybrid coupling is
done by employing overlap regions along two directions (two-dimensional coupling) with the aid
of the Chapman–Enskog velocity distribution function for boundary condition imposition from the
continuum to the atomistic regime. By the Schwarz method, coupling is achieved by the iterative
exchange of Dirichlet boundary conditions across an overlap region between the continuum and
atomistic sub-domains. Various flow modeling aspects for this hybrid coupling are discussed in
detail followed by the implementation of the Schwarz method. The impact of the size of the overlap
region on the convergence behavior of the Schwarz method is also investigated.

2. DSMC SIMULATION METHOD

DSMC is a particle method based on the kinetic theory for the simulation of dilute gases. A detailed
explanation of the steps involved in the DSMC method can be found in Bird [7]. The evolution
of molecules is determined by tracking their positions and velocities. Starting from a set of
initial conditions, the flow develops in a physically realistic manner by evaluating the collisions
between the particles, boundary interactions of the particles with the wall and at the inflow/outflow
boundaries. In contrast to the molecular dynamics method, the exact trajectory of each particle is
not calculated in DSMC; instead a stochastic algorithm is used to evaluate the collision probabilities
and scattering distributions based on kinetic theory. The time step in the DSMC simulation is
much smaller than the mean-free time (mean time between successive collisions of particles), the
collision between the particles can be decoupled from the positional changes of the particle for
each time step, i.e. the particles are moved as if they do not interact and collision is considered
only after all the particles have moved during the time step. The particles in the simulation are
considered to be hard spheres. The particle–wall interactions are assumed to be inelastic and follow
the diffuse reflection model with full thermal accommodation. The macroscopic properties such
as the flow velocity, etc are derived as averages during the sampling phase once the system attains
a steady state.

Figure 1 shows a schematic of a typical three-dimensional slider bearing geometry, which is
representative of the HDI gap between the slider and the hard disk. The computational domain
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Figure 1. Schematic of three-dimensional slider geometry and computational domain.

is of length L and width W in which the flow is simulated using the DSMC method. The lower
wall represents the spinning disk region moving with a tangential velocity Uw relative to the upper
wall, which represents the slider surface. The channel height h varies along the length of the
slider as the slider is inclined at a pitch angle � relative to the lower wall. The channel height
at the inflow boundary is denoted by H1, while that at the outflow boundary that represents the
flying height is denoted by H0. For the three-dimensional slider shown in Figure 1, the inflow
boundary is represented by the y–z plane at the entrance, while all the other three sides of the
slider are treated as outflows. At the inflow and outflow boundaries of the slider bearing, ambient
conditions of pressure P0=1atm and temperature T0=273K are imposed by injecting particles
with appropriate molecular velocity distribution from the inflow/outflow boundaries. The inflow
and outflow boundary conditions for micro flows are discussed next.

2.1. Considerations for imposing boundary conditions

The inflow/outflow boundary conditions in a DSMC simulation are implemented by injecting
particles into the system corresponding to the external flow conditions. The number of particles to
be injected is derived from the density information, while the molecular velocity distribution of
the injected particles must correspond to the mean flow macroscopic variables characteristic to the
external flow as have been outlined in works such as that by Bird [7], Lilley and Macrossan [8]
and Tysanner and Garcia [9]. For hybrid continuum–atomistic methods that couple the continuum
solutions to the DSMC region, reservoir regions upstream and downstream of the inflow/outflow
boundaries are incorporated to impose the boundary conditions. Particles must fill the reservoir
region with a molecular velocity distribution corresponding to the flow velocity and velocity gradi-
ents in the continuum solutions. The equilibrium Maxwellian distribution function representation
of the continuum equations is adequate for Euler equations, but in the case of the NS equations,
the Chapman–Enskog distribution must be used as given in Chapman and Cowling [10].

For stand-alone DSMC computations, boundary conditions are often based on the equilibrium
Maxwell–Boltzmann distribution function. In such cases particles are typically injected from
the inflow/outflow boundary face, such that the velocity component of the injected particles u,
which is normal to the inflow/outflow boundary corresponds to the biased Maxwellian distribution
function. The other two molecular velocity components v and w are obtained separately from the
ordinary Maxwellian distribution function. Besides the molecular velocity information, mean flow
parameters such as density, temperature and velocity also need to be known to correctly set the
properties of the incoming molecules at the inflow and the outflow boundaries. For high-speed
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compressible flow applications, given the density and the mean flow velocity of the external flow,
the mean flow parameters of the injected particles can be directly set as corresponding to the
free stream boundary condition. In micro flow applications, as the flow conditions near the inflow
and outflow boundaries are not uniform owing to the influence from the presence of walls, free
stream boundary conditions are not appropriate. Typically, in MEMS applications only the pressure
information at the inflow and outflow boundaries is known a priori. Therefore, in such applications
pressure boundary conditions are employed such that given the pressure information, other flow
variables such as velocity are derived in an implicit manner as the flow simulation progresses to
fix the boundary conditions.

2.2. Pressure boundary conditions

Various methods of implementing the implicit boundary treatment for the inflow and outflow
boundaries for micro and nano scale flows modeled by the DSMC method have been proposed in
the literature such as in Ikegawa and Kobayashi [11], Nance et al. [12] and Wu and Tseng [13].
One approach is the particle flux conservation concept in which the information on the number of
particles crossing the boundaries is used to update the inflow velocity. The method of computing
the inflow velocity at each time step using the particle flux conservation concept could result in
errors under low-speed flow conditions, since the number of particles crossing the inflow boundary
at low speed is very small and hence results in fluctuations in the imposed flow variables at the
boundary. These fluctuations can be minimized by deriving the inflow velocity from the average
number of particles entering the system over several time steps. Fang and Liou [14] had proposed
a simple scheme by which a first-order extrapolation is used to determine the inflow mean velocity
from the computed values at the cells inside the computational domain at the inflow boundary.
However, the inflow velocity left uncorrected may not embody the pressure information and could
be problematic if the wall temperature is different from the gas temperature. To overcome these
difficulties, Wang and Li [15] had proposed a pressure correction scheme for both the inflow and
outflow pressure boundaries based on the theory of characteristics and implemented the same for
a two-dimensional simulation of poiseuille flow, orifice flow and corner flow in micro geometries.
The advantage of the pressure boundary condition is that it does a feedback correction to fix the
desired pressure conditions at the boundaries, by deriving the local mean flow parameters like the
inflow and outflow velocity in an implicit manner as the simulation progresses. This approach has
been extended in this work for the three-dimensional flow modeling in the slider bearing region.

The details of the treatment of boundary conditions at the inflow and outflow sections of the
HDI gap at the entrance and exit given by the y–z plane as shown in Figure 1 are explained in this
section. The number of particles, N , entering the computational domain from either the inflow or
outflow boundary is determined from the Maxwellian distribution function

N =�t An
1

2�
√

�
{e−�2U2

j +�
√

�Uj [1+erf(�Uj )]} (1)

where n is the number density at the inflow/outflow face, Uj represents the normal local mean
flow velocity component at the boundary, A the cross-sectional area of the inflow/outflow face
and �=1/

√
2RT where R is the universal gas constant.

The velocity component distribution of the injected particles is determined as follows. The
velocity component, u, of the particles entering the computational domain, which is normal to
the inflow or outflow boundary is generated using the acceptance–rejection procedure since it
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corresponds to the biased Maxwell–Boltzmann distribution. The molecular velocity components v

and w parallel to the y and z axes of the y–z plane are obtained independently by sampling from
the velocity distribution characteristic of the external flow as

v=(
√− ln(Rf)/�)cos(2�Rf)+Vj (2)

w=(
√− ln(Rf)/�)sin(2�Rf)+Wj (3)

where Vj ,Wj represent the local mean flow velocity components in the y and z directions, j is
the cell at the inflow or outflow boundary and Rf is a random fraction which ranges from 0 to 1.

The mean flow parameters are determined as follows. At the inflow boundary the known flow
variables are pressure, pin, and temperature, Tin. The number density, nin, can be then obtained
from the equation of state as

(nin)= Pin
kTin

(4)

where k is the Boltzmann constant.
The inflow velocity is then changed adaptively during the course of the flow simulation to

enforce the pressure boundary conditions. The mean inflow velocity is obtained implicitly from
the pressure information based on the theory of characteristics as follows:

(Uin) j =Uj +(pin− p j )/� j a j (5)

where the subscript j denotes the cell at the boundary, � is the density of air and a is the local
speed of sound. Similarly, at the subsonic outflow boundary the only known flow parameter is the
exit pressure pe. The other flow variables such as density and mean flow velocity are determined
implicitly during the course of the flow simulation as follows:

(�e) j =� j +(pe− p j )/(a j )
2 (6)

(Ue) j =Uj +(p j − pe)/� j a j (7)

3. HYBRID CONTINUUM–ATOMISTIC MODELING

Rarefied gas flow applications often involve both continuum and rarefaction regions and span a
wide range of Knudsen numbers. The DSMC method can model the entire Knudsen number regime
accurately, but is computationally expensive to model the entire domain. This motivates the use
of multi-scale methods, which can couple DSMC that models the rarefied regions with continuum
models in the rest of the region. Hadjiconstantinou [16] provides a review of the recent develop-
ments in the field of hybrid continuum–atomistic methods. The applicability of various coupling
schemes to different flow problems has been studied in Wijesinghe and Hadjiconstantinou [17].
Explicit flux-based coupling method is appropriate for hypersonic flows for which the character-
istic timescale is comparable to the DSMC time step. Multi-scale methods applied to hypersonic
compressible flow problems reported in the literature include that by Garcia et al. [18], Hash and
Hassan [19] and Wadsworth and Erwin [20]. More recently, hybrid methods have been applied for
incompressible flow problems especiallya for modeling of microfluidics in MEMS applications.
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A hybrid continuum–atomistic method that relies on an explicit state-based coupling scheme at
each time step for hypersonic non-equilibrium flow applications has been reported recently by
Schwartzentruber and Boyd [21]. However for low-speed flows, as typically encountered in MEMS
applications, there is a wide disparity between the timescales of atomistic and continuum models
and implicit methods provide a framework for coupled solutions. As a result explicit flux-based
coupling for incompressible flow problems might be computationally prohibitive especially if the
continuum sub-domain is very large. Also flux-based coupling is not suitable for low-speed flows
because of the high statistical noise of the flux variables when compared with the state vari-
ables such as velocity. Hence, the Schwarz alternating method provides an implicit framework for
obtaining coupled solutions for such cases.

The Schwarz method, which was originally developed as a domain decomposition method as
outlined in Quarteroni and Valli [22] for solving partial differential equations, has been extended
for hybrid continuum–atomistic coupling and was first applied to liquid flows by Hadjiconstantinou
[23] and later for dense fluids by Werder et al. [24]. Wijesinghe and Hadjiconstantinou [17]
demonstrated the Schwarz hybrid coupling for a driven cavity test problem by employing overlap
regions in both the x and y directions (two-dimensional coupling) and employed the Chapman–
Enskog distribution. Real applications of the Schwarz alternating method to hybrid continuum–
atomistic methods for gaseous flows in MEMS devices are a paucity in the literature. The Schwarz
method has been applied recently by Aktas et al. [25] to predict the flow field in microfluidic
filters. They had considered an overlap region in just one direction (one-dimensional coupling) for
the hybrid coupling of the continuum and atomistic sub-domains and employed the Maxwellian
distribution function. A flux-based coupling scheme has been employed previously for the coupling
of continuum and DSMC solutions for the slider bearing problem by Memnonov [26]. Initial
results of the hybrid coupling by the Schwarz alternating method for the slider bearing problem
have been reported in Benzi and Damodaran [27]. In the present work, the Schwarz alternating
method is employed for the hybrid coupling of continuum and atomistic sub-domains to compute
flow in the vicinity of the HDI gap and the impact of overlap size on the convergence behavior
of the Schwarz method is investigated in detail. By the Schwarz alternating method, the coupling
between the continuum and atomistic sub-domains is attained implicitly by iterating between the
steady-state solutions of the two sub-domains. An overlap region between the NS and atomistic
regions facilitates the information exchange between the two domains in the form of Dirichlet
boundary conditions. Exchange of flow variables such as velocity components when compared
with the exchange of flux variables ensures that the statistical errors associated with DSMC can be
minimized [28]. Schwarz iterations are done with updated boundary conditions in each sub-domain
until solutions of both sub-domains are identical in the overlap region. From the point of view of
computational efficiency, the atomistic region modeled by the DSMC method must be confined
to rarefied regions while the remaining larger domain must be modeled as part of the continuum
regime. One-dimensional Schwarz coupling employed by considering overlap region along one
direction implies that the region modeled by DSMC for each Schwarz iteration could be very
large resulting in poor computational efficiency. Thus for an optimum computational efficiency
a two-dimensional coupling must be employed by considering overlap regions along both the
x and y directions. In this work, the application of Schwarz coupling is demonstrated in two
dimensions using the Chapman–Enskog distribution for boundary condition imposition from the
continuum region to the DSMC region. The schematic of the two-dimensional geometry with the
decomposition of the simulation domain into NS and DSMC sub-domains is shown in Figure 2. In
the continuum domain, the incompressible NS equation is solved using the commercial flow solver
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Figure 2. Schematic of two-dimensional computational domain showing DSMC and NS
sub-domains with overlap region.

Fluent [29] which uses the finite volume method with the pressure equation derived using the
SIMPLE method. The region under the slider and additional regions near the inflow and outflow
is considered as the atomistic region that is modeled by DSMC, whereas the rest of the region
is considered as the continuum domain modeled by the NS equations. The slider bearing region
considered is of length L=4�m, flying height H0=25nm, pitch angle �=0.01rad and the bottom
wall velocity Uw=50m/s. Additional regions of length lext=1.5�m and height hext=156nm at
either side of the slider are also considered as part of the DSMC sub-domain as shown.

In Figure 2, the solid lines AA1A2 and A3A4A5 represent the atomistic boundary that receives
the flow variables from the continuum domain, whereas the dotted lines CC1C2 and C3C4C5
represent the continuum sub-domain boundary that receives flow variables from the atomistic sub-
domain. Schwarz coupling is done in two dimensions, for which overlap regions are considered
both along the x and y directions as shown. The overlap along the x direction will be referred to
as x-overlap which is of width lx,ov, whereas the overlap along the y direction will be referred to
as y-overlap which is of width ly,ov. A similar overlap width is considered at both the inflow and
outflow section with lx,ov=0.5�m and ly,ov=39nm. A small selected region upstream of the slider
denoted by the dotted rectangular region DEFG as shown in Figure 2 is chosen to make contour
plots of the hybrid solution obtained. In the NS sub-domain the flow conditions are considered as
incompressible and isothermal. The no-slip boundary condition is applied at all the walls denoted
by W1−6 in the NS sub-domain as shown. The inlet boundary of the computational domain denoted
by I in the figure is treated as a Pressure Inlet, whereas the outlet boundary denoted by O is
specified as Pressure Outlet by which ambient pressure condition of P0=1atm is specified.

Figure 3 illustrates the boundary condition transfer for the hybrid coupling using the Schwarz
alternating method. The DSMC and continuum sub-domains are tessellated using uniformly spaced
rectangular cells. Dotted rectangular lines represent the cells in the continuum sub-domain and
solid rectangular cells represent the DSMC cells. The macroscopic flow velocities (UDSMC,VDSMC)

computed in the DSMC cells can be imposed directly as Dirichlet boundary conditions at the face
centers of the continuum domain boundary �NS. The macroscopic velocities are obtained by time
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Figure 3. Schematic illustration of the Schwarz coupling method.

averaging the molecular velocities as normally done during the sampling phase in any standard
DSMC procedure as follows:

UDSMC= 1

Nc

Nc∑
i=1

ui (8)

VDSMC= 1

Nc

Nc∑
i=1

vi (9)

where Nc is the number of particles in the cell, (ui ,vi ) are the molecular velocity components.
The computed flow velocity field from the DSMC cells is extracted and used in the continuum
domain (in which NS equations are solved using Fluent) as a boundary profile or via a user-defined
function in Fluent. In order to mitigate the interpolation errors at the continuum boundary, the
rectangular cells used for both the DSMC and continuum domains are taken to be of equal size
and the face centers of the continuum cells along the boundary �NS are aligned with the centers
of the DSMC cells as shown in Figure 3.

The boundary conditions from the continuum sub-domain to the DSMC sub-domain are imposed
using buffer cells (located adjacent to the boundary of the DSMC sub-domain �DSMC) that act
as a volume reservoirs filled with particles according to the density and velocity distribution
corresponding to the NS solution in the continuum cells. The number of particles generated
corresponds to the density information �NS in the continuum cells. The Chapman–Enskog molecular
velocity distribution is used to generate particles corresponding to the flow velocity (UNS,VNS)
and velocity gradients in the NS sub-domain. The reservoir region is of length lR as shown in
Figure 3 and lR is assumed such that it is sufficient to represent the entire range of velocity
distribution function including the portion of the distribution function corresponding to the high-
velocity fraction. The length of the reservoir region for the Chapman–Enskog distribution is the
same as that for the Maxwellian distribution function. In the presence of a mean flow velocity
U , the length of the reservoir region is taken as lR=vcutoff×dt where vcutoff=6×(Vmp+U ) is
the cutoff velocity, Vmp is the most probable velocity and dt is the time step. This ensures that
the length of the reservoir is adequate enough to represent the entire range of Chapman–Enskog
velocity distributions. The Chapman–Enskog distribution can be generated numerically by the
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acceptance–rejection method as outlined in Garcia and Alder [30]. The Chapman–Enskog velocity
distribution f (C) is given as follows:

f (C)= f0(C)�(C) (10)

where f0(C) is the Maxwellian distribution and C is the normalized thermal velocity whose
components (Cx ,Cy,Cz) are given by

Cx =(u−UNS)/Vmp, Cy =(v−VNS)/Vmp, Cz =(w)/Vmp (11)

where (u,v,w) represents the molecular velocity components and Vmp is the most probable velocity
given by Vmp=(2kT/m)1/2

f0(C)= 1

�3/2
e−C2

(12)

�(C) is given by

�(C) = 1+(qxCx +qyCy+qzCz)(
2
5C

2−1)−2(�xyCxCy+�xzCxCz+�yzCyCz)

−�xx (C
2
x −C2

z )−�yy(C
2
y −C2

z ) (13)

qi =− k

P

(
2m

kT

)1/2(
�T
�xi

)
(14)

�i j = �

P

(
�vi

�x j
+ �v j

�xi
− 2

3

�vk

�xk
�i, j

)
(15)

where qi and �i j are the dimensionless heat flux and stress tensor, � is the dynamic viscosity
of air, k is the thermal conductivity, P is the pressure and v=(UNS,VNS) is the mean velocity.
To implement the Chapman–Enskog distribution function numerically by acceptance–rejection
theorem, the velocity components (UNS,VNS) and the velocity gradients �UNS/�x , �UNS/�y,
�VNS/�x and �VNS/�y from the continuum domain are used to compute the values for �(C). The
cell-centered values of the velocity and their gradients across any required section are obtained using
Fluent. At each time step the reservoir is filled with particles and convected. Those particles that
enter the simulation domain are retained, while the rest are discarded. To reduce the computational
time associated with the DSMC method, the DSMC code solving the atomistic regime has been
parallelized. Eight processors have been deployed for the computation and to ensure a reasonable

Figure 4. Schematic representation of partitioning of the DSMC sub-domain among eight
processors for parallel processing.
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load balance among the processors, the partitioning of the computational domain is done such
that each processor has approximately the same number of cells. The partitioning of the DSMC
computational domain between processors to enable parallel computation is shown in Figure 4.

4. RESULTS AND DISCUSSION

For all the DSMC flow calculations considered in this work, the gaseous medium air is assumed
to consist of monatomic molecules, each with a mass m=6.63×10−26 kg, diameter d=3.66×
10−10m and density �=1.78kg/m3. The time step for all the DSMC simulations is much smaller
than the mean collision time and is five times smaller than �x/Vmp, where �x is the smallest cell
dimension and Vmp is the most probable molecular velocity. The parallel DSMC method outlined
in Benzi and Damodaran [31] has been used to reduce the computational time.

4.1. DSMC slider bearing results

The impact of various parameters such as the number of cells and number of particles per cell
on the accuracy of a DSMC simulation for the slider bearing application is considered in this
section. The general guideline for an accurate DSMC simulation is that cell dimensions must be
less than a mean-free path long and the time step less than the mean collision time with an average
of at least 20–25 particles per cell. However, these constraints are problem specific and could be
relaxed depending on the flow velocity and gradients of the specific problem under consideration.
As DSMC is computationally intensive, it is important to have guidelines regarding the minimum
number of cells and number of particles per cell required without compromising the accuracy,
especially for a three-dimensional simulation and hence this investigation is done for the slider
bearing application. On the basis of this study, adequate care has been taken to ensure the accuracy
of the DSMC simulations for the HDI gap.

4.1.1. Two-dimensional DSMC flow simulations. The effect of the number of simulated particles
per cell on the accuracy of the DSMC solutions for a two-dimensional simulation is investigated.
The investigation has been done for a slider configuration shown in Figure 1 with L=4�m,
flying height H0=25nm and a tangential velocity Uw=25m/s. Five DSMC simulations using an
average of about 10, 20, 25, 35 and 50 particles per cell have been carried out. Figure 5 shows
the effect of the number of particles per cell on the accuracy of the solutions of pressure and flow
velocity distribution along the extent of the slider length on the lower wall or disk surface. It can
be observed that for all the cases using 20 or more particles per cell the variation between the
computed flow solutions is not significant, besides some statistical fluctuations. The convergence
rate for the different cases considered is shown in Figure 6 by plotting the absolute average error
with respect to the case with the largest number of particles per cell considered. For example, the
absolute average error for pressure is calculated as |Pref,av−Pav|/Pref,av, where Pav is the average
value of pressure over the entire section and Pref,av is the average value for the case with 50
particles per cell. It seems that the accuracy of the solutions has not improved further for cases
using more than 20 particles per cell implying that 20 particles or more per cell are adequate
enough for an accurate DSMC simulation in the HDI gap.
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Figure 5. Effect of the number of particles on the accuracy of: (a) pressure and (b) velocity variation
along the extent of the slider lower wall (or disk surface).

Figure 6. Average absolute error for pressure and velocity versus number of particles per cell.
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Figure 7. Effect of the number of cells on the accuracy of computed: (a) pressure and (b) velocity
distribution along the extent of the slider lower wall (or disk surface).

The effect of the number of cells on the computed flow field is assessed by using 40×5, 60×5,
80×5, 100×5, 120×5 and 150×5 cells, which corresponds, respectively, to cell dimensions of
about 1.6,1.07,0.8,0.64,0.53 and 0.43 times the mean-free path in the flow direction. All the
cases considered are based on an average of about 35 particles per cell. Figure 7 shows the effect
of cell size on the variation of the computed pressure profile and flow velocity distribution along
the bottom wall. The convergence rate with increase in number of cells is shown in Figure 8
by plotting the absolute average error with respect to the case with the largest number of cells
considered, i.e. 150×5 cells. It is seen that by increasing the total number of cells along the flow
direction, the error in the computed flow solutions is negligible and the accuracy of the solution
is not improved further. This suggests that since the velocity gradients in the flow direction are
negligible for the case of a slider bearing, cell dimensions in the flow direction can be even greater
than a mean-free path.

4.1.2. Three-dimensional DSMC flow simulations. The impact of the number of particles per cell
has also been investigated for a three-dimensional slider bearing configuration shown in Figure 1
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Figure 8. Average absolute error for pressure and velocity versus number of cells in the flow direction.

Figure 9. Effect of the number of particles on accuracy of: (a) pressure and (b) velocity solutions for
three-dimensional DSMC along the disk surface.
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Figure 10. Average absolute error for pressure and velocity versus number of particles per cell.

with L=3�m, W =3.3�m, H0=25nm and Uw=25m/s using the parallel DSMC code [31] for
different number of particles viz. an average of about 13, 25, 38 and 50 particles per cell. The
effect of the number of particles on the computed pressure and flow velocity distribution across
a section along the disk surface located at z/W =0.5 is shown in Figure 9. The convergence
rate with increase in number of particles per cell is shown in Figure 10 by plotting the absolute
average error with respect to the case with 50 particles per cell. It can be seen that for the case
corresponding to 25 particles per cell, the solution converges and further increase in the number
of particles per cell seems to reduce the statistical fluctuations further. Based on this study, an
average of about 30 particles per cell is used for all three-dimensional DSMC flow simulations
considered in this work.

The effect of the number of cells in the z direction on the accuracy of a three-dimensional
DSMC flow simulation is also investigated for varying cell sizes, viz. 64×4×20, 64×4×30,
64×4×40, 64×4×50 and 64×4×60 cells, which corresponds to a cell dimension of about 2.64,
1.76, 1.32, 1.06 and 0.88 times the mean-free path in the z direction, respectively. Figure 11
shows the variation of the computed pressure profile along the disk surface corresponding to the
various cell sizes. The corresponding absolute average error plot is also shown. It can be seen that
increasing the number of cells in the z direction does not result in any observable increase in the
accuracy. This suggests that cell dimensions can be much greater than the mean-free path in the
z direction for a DSMC simulation in the HDI gap, where the velocity gradients are very small.

The variation of speedup (a performance metric defined as S=Ts/Tp, where Ts and Tp are the
times taken for serial and parallel simulation, respectively) in the parallel three-dimensional parallel
DSMC code with increase in number of particles per cell is shown in Figure 12. The performance
analysis is done on AlphaServer Supercomputer (SC45), which is a distributed memory platform
consisting of 44 nodes each having four 1GHz processors with 1GB memory and 8MB cache.
The performance curves show good scaling characteristics with super-linear speedups obtained for
all the three cases considered, i.e. 20, 40 and 80 particles per cell. The super-linear speedup can
be attributed to cache effects. By using multiple processors the size of sub-problem is reduced
such that the data easily fit into caches resulting in significant reduction in memory access time.
For a fixed load the parallel program scales up well up to a higher number of processors and
with increase in number of particles per cell, significant improvement in performance is obtained.
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Figure 11. Plots of: (a) pressure profile along the disk surface and (b) absolute average error versus
number of cells taken along the z direction.

Figure 12. Speedup metric of the parallel DSMC code.
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Figure 13. Computed pressure fields in the head–disk interface gap: (a) three-dimensional pressure profile
and (b) pressure contours on the disk surface.

The computed pressure field in the three-dimensional slider bearing geometry for which L=3�m,
W =3.3�m, H0=15nm and Uw=25m/s is shown in Figure 13.

4.2. Hybrid continuum–atomistic flow solutions using Schwarz coupling

The Schwarz alternating method is applied to compute hybrid continuum–atomistic solutions in
the vicinity of the HDI gap shown in Figure 2. The effect of grid size on the accuracy of the NS
flow solutions in the continuum sub-domain has also been addressed. The grid convergence study
has been conducted for the continuum sub-domain upstream of the slider with three different grid
densities considered, i.e. 56 840, 85 200 and 113 680 cells. Figure 14 shows the variation of flow
velocity in the y direction along a line taken at the mid section of the selected plane DEFG (shown
in Figure 2) for the different grid cases. It can be seen from the plot that the flow solution does
not change significantly with increase in grid density and hence adequate for an accurate flow
simulation. For the NS simulations undertaken in this work the case with the finest grid density
(i.e. 113 680 cells) is considered.

For the first Schwarz iteration, the DSMC sub-domain is solved using an initial guess boundary
condition of P=1atm, UNS=0m/s, VNS=0m/s at all the DSMC inflow and outflow boundaries.
Additional Schwarz iterations are done using updated boundary conditions for each iteration
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Figure 14. Plot of grid convergence showing variation of flow velocity with grid size in the NS domain.

Figure 15. Convergence of: (a) pressure and (b) velocity boundary conditions transferred
from continuum to DSMC along x-overlap.
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Figure 16. Convergence of: (a) pressure and (b) velocity boundary conditions transferred from
continuum to DSMC along y-overlap.

until the solutions converge in the overlap region. The convergence of the Schwarz method
can be assessed from the variation of velocity and pressure boundary conditions transferred
from the continuum domain to the DSMC sub-domain with Schwarz iterations. The variation
of the transferred velocity and pressure boundary conditions with Schwarz iteration along the
x-overlap and y-overlap is shown in Figures 15 and 16. The boundary condition value along the
x-overlap is plotted by taking the corresponding value from the buffer cell at hext/2, whereas
the boundary condition value along the y-overlap is plotted by taking the corresponding value
from the buffer cell at lext/2. It can be observed from the figures that convergence is attained
in about five iterations after which the variations in the transferred boundary conditions are
negligible.

Figure 17 shows the variation of the computed velocity components and pressure fields in the
DSMC sub-domain with Schwarz iterations along a straight line located at a height of 0.15H1
above the bottom wall, where H1 is the slider height at the leading edge. In the figure the region
between the two vertical lines denotes the slider bearing region. It can be seen that the converged
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Figure 17. Variation of flow solutions of: (a) pressure; (b) x-velocity; and (c) y-velocity in the DSMC
sub-domain with Schwarz iterations.

solutions for both pressure and velocity are obtained in about five iterations after which the solutions
remain unchanged.

The computed velocity contour from the hybrid solutions obtained by combining the solutions in
the continuum and atomistic regions across the selected plane DEFG (shown in Figure 2) located
upstream of the slider is shown in Figure 18. The region between the dotted lines in the figure
represents the overlap region.
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Figure 18. Velocity contour from the hybrid solution across a selected region upstream of the slider. (The
region between the dotted lines represents the overlap region).

Figure 19 compares the converged hybrid solutions of pressure and x-velocity with the exact
solution in the entire domain. The DSMC solution in the entire domain is considered as the exact
solution and comparisons are made across two selected sections by plotting the velocities along
two straight lines located at a height of 0.15H1 and 0.35H1 above the bottom wall. Comparison
of pressure is made across just one section which is at a height of 0.15H1 above the bottom
wall, since the variation of pressure is negligible along the thickness of the bearing. In the figure
the vertical lines denote the overlap region. The solutions of both pressure and velocity show
good correlation with the exact solutions with a maximum deviation of about 5% observed. The
pressure in the region outside the slider remains about the ambient pressure, while that near the
inflow and outflow of the slider deviates from the ambient pressure of 1 atm. At the inflow there
is a significant increase in pressure, while at the outflow the pressure drops below the ambient
pressure, which affects the pressure profile in the slider bearing region. From the solutions of
velocity, it can be observed that the velocity values under the slider are characterized by slip
and rises to a peak value at the trailing edge of the slider where there is a sudden pressure
drop.

4.2.1. Effect of size of overlap region on convergence. The effect of size of the overlap region
on the convergence of the hybrid Schwarz method is investigated by considering different overlap
widths along the y-overlap region. The variation of computed velocity and pressure boundary
conditions transferred from the continuum domain to the DSMC sub-domain with different overlap
width size is shown in Figure 20. The boundary condition value along the y-overlap is plotted by
taking the corresponding values of pressure and velocity from the buffer cell at lext/2. The error
in the transferred boundary conditions of pressure and velocity from the continuum domain to
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Figure 19. Comparison of hybrid solutions of: (a) pressure and (b) x-velocity with the
exact solution in the entire domain.

the DSMC sub-domain along the y-overlap region is shown in Figure 21 by plotting the relative
error norm with respect to the exact solution. For example, the relative error norm for pressure is

calculated as
∑√

(Pexact−P)2/P2
exact, where Pexact is the exact solution.

It is observed from Figures 20 and 21 that the Schwarz method for NS/DSMC coupling does
not converge when the overlap is zero. Both the pressure and velocity values appear to diverge
with Schwarz iterations in the absence of an overlap region. For all the other cases of overlap
width considered viz; w=26, 39, 52nm, the convergence is not significantly affected with variation
in the overlap. With increasing overlap size, the convergence is only slightly improved, with no
significant variations observed. The results indicate that the hybrid coupling by the Schwarz method
is weakly dependent on the size of the overlap region. However, a finite overlap must be employed
to facilitate the exchange of boundary conditions as the hybrid solution could diverge with zero
overlap.

4.2.2. Comparison of continuum solutions with hybrid solutions. An investigation is done to
study the impact of rarefied flow effects on flow prediction in the vicinity of the HDI region by
comparing the computed flow field in the entire domain obtained using the NS equations with
the hybrid continuum–atomistic solution in the entire domain. The comparisons of the continuum
solutions of pressure and velocity with the hybrid solutions along the disk surface are plotted

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:1273–1298
DOI: 10.1002/fld



COMPUTATION OF HEAD–DISK INTERFACE 1295

Figure 20. Convergence of: (a) pressure and (b) x-velocity component with Schwarz iterations
as a function of overlap size.

in Figure 22. The region between the two vertical lines denotes the slider bearing region. The
continuum solutions overpredict the solutions of both pressure and velocity. The peak pressure
predicted by the continuum method varies by about 50% from the hybrid solutions. The flow in the
slider falls in the transition regime and hence the continuum solutions cannot predict the rarefied
flow effects like velocity slip as could be observed from the velocity plot comparison.

5. CONCLUSIONS

In this work, flow modeling for micro flow simulations using DSMC method is discussed in
detail both for a stand-alone DSMC computations and a hybrid continuum–atomistic simulation in
which a NS solution is coupled to a DSMC solution. An appropriate implicit boundary treatment
method for modeling inflow and outflow flow simulation. An investigation into the number of cells
required for an accurate DSMC simulation of the HDI gap reveals that the linear cell dimensions
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Figure 21. Convergence of relative error norm of: (a) pressure and (b) x-velocity component along the
y-overlap boundary with Schwarz iterations as a function of overlap size.

along the length and width of the slider can be much greater than the mean-free path because of
very small velocity gradients along these directions. This effectively reduces the total number of
cells and particles required to ensure an accurate DSMC simulation of the HDI gap. A hybrid
continuum–atomistic method for micro flows based on the Schwarz alternating method is applied
to compute flow in the HDI gap. The hybrid coupling has been demonstrated in two dimensions
by considering overlap regions along both the x and y directions. Boundary condition imposition
from the continuum region to the DSMC region has been achieved with the aid of buffer cells
and Chapman–Enskog velocity distribution. To reduce the computational cost associated with the
DSMC method, the DSMC sub-domain has been parallelized. Converged hybrid flow solutions
are obtained in about five iterations and the hybrid DSMC–NS solutions show good agreement
with the exact solutions in the entire domain considered. A study on the impact of the size of the
overlap region on the convergence behavior of the Schwarz method shows that a finite overlap
region is essential for the convergence of the Schwarz method, as the hybrid solutions have been
found to diverge when an overlap of zero width is considered. For all other cases of finite overlap
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Figure 22. Comparison of Navier–Stokes (continuum) solutions of: (a) pressure and (b) x-velocity with
the hybrid solutions in the entire domain.

sizes, no significant variations in the convergence behavior are noted. The impact of rarefied flow
effects on the flow prediction in the vicinity of the HDI region has also been investigated by
comparing the flow field obtained using the NS equations in the entire domain with the accurate
hybrid solutions.
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